安装和体验hive-1.2

欢迎访问我的GitHub

这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos

关于hive

Hive是种基于Hadoop的数据仓库工具,将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能。

环境信息

本文对应的环境信息如下:

  1. CentOS Linux release 7.5.1804

  2. JDK:1.8.0_191

  3. hadoop:2.7.7

  4. hive:1.2.2

hadoop的部署和启动

  1. hadoop环境的部署和启动请参考《Linux部署hadoop2.7.7集群》;

  2. 注意:确保环境变量中有HADOOP_HOME的配置;

安装和配置MySQL(5.7.27版本)

  1. MySQL用来存储元数据,我这里为了简化操作是在docker环境下部署的,一行命令即可:

docker run --name mysql -p 3306:3306 -e MYSQL_ROOT_PASSWORD=888888 -idt mysql:5.7.27
  1. 进入mysql容器:

docker exec -it mysql /bin/bash
  1. 进入容器后连接mysql,密码是888888:

mysql -h127.0.0.1 -uroot -p
  1. 新建名为hive的mysql账号:

CREATE USER 'hive' IDENTIFIED BY '888888';
  1. 给hive账号授权访问(并且hvie账号还有权给其他账号授权):

GRANT ALL PRIVILEGES ON *.* TO 'hive'@'%' WITH GRANT OPTION;
  1. 刷新权限数据:

flush privileges;
  1. 在宿主机的终端执行以下命令重启mysql服务:

docker exec mysql service mysql restart
  1. 再次进入mysql容器,以hive账号的身份登录mysql:

mysql -uhive -p
  1. 创建名为hive的数据库:

CREATE DATABASE hive;

安装hive

  1. 去hive官网下载,地址是:http://mirror.bit.edu.cn/apache/hive/ ,选择合适的版本,如下图:注意:接下来的操作用的账号都不是root,而是hadoop

  2. 在hadoop账号的家目录下解压刚刚下载的apache-hive-1.2.2-bin.tar.gz文件,是个名为apache-hive-1.2.2-bin的目录;

  3. 编辑hadoop账号的.bash_profile文件,增加一个环境变量,就是将刚刚解压出来的apache-hive-1.2.2-bin文件夹的完整路径:

export HIVE_HOME=/home/hadoop/apache-hive-1.2.2-bin
  1. 修改完毕后,重新打开一个ssh连接,或者执行source ~/.bash_profile让环境变量立即生效;

  2. 进入目录apache-hive-1.2.2-bin/conf/,用模板文件复制一份配置文件:

cp hive-default.xml.template hive-default.xml
  1. 在此目录创建名为hive-site.xml的文件,内容如下:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
  <property>
    <name>javax.jdo.option.ConnectionURL</name>
    <value>jdbc:mysql://127.0.0.1:3306/hive?createDatabaseIfNotExist=true</value>
  </property>
  <property>
    <name>javax.jdo.option.ConnectionDriverName</name>
    <value>com.mysql.jdbc.Driver</value>
  </property>
  <property>
    <name>javax.jdo.option.ConnectionUserName</name>
    <value>hive</value>
  </property>
  <property>
    <name>javax.jdo.option.ConnectionPassword</name>
    <value>888888</value>
  </property>
</configuration>
  1. 将mysql的JDBC包放在此目录:/home/hadoop/apache-hive-1.2.2-bin/lib/,我这里用的是mysql-connector-java-5.1.47.jar,您可以在此下载:https://download.csdn.net/download/boling_cavalry/11834367

设置工作已经完成了,接下来是启动和初始化;

初始化和启动hive

  1. 进入目录apache-hive-1.2.2-bin/bin,执行以下命令初始化:

./schematool -initSchema -dbType mysql

操作成功后,控制台提示:

[hadoop@node0 bin]$ ./schematool -initSchema -dbType mysql
Metastore connection URL:  jdbc:mysql://127.0.0.1:3306/hive?createDatabaseIfNotExist=true
Metastore Connection Driver :  com.mysql.jdbc.Driver
Metastore connection User:  hive
Starting metastore schema initialization to 1.2.0
Initialization script hive-schema-1.2.0.mysql.sql
Initialization script completed
schemaTool completed
  1. 在mysql上看一下,数据库hvie下建了多个表:

mysql> show tables;
+---------------------------+
| Tables_in_hive            |
+---------------------------+
| BUCKETING_COLS            |
| CDS                       |
| COLUMNS_V2                |
| COMPACTION_QUEUE          |
| COMPLETED_TXN_COMPONENTS  |
| DATABASE_PARAMS           |
| DBS                       |
| DB_PRIVS                  |
| DELEGATION_TOKENS         |
| FUNCS                     |
| FUNC_RU                   |
| GLOBAL_PRIVS              |
| HIVE_LOCKS                |
| IDXS                      |
| INDEX_PARAMS              |
| MASTER_KEYS               |
| NEXT_COMPACTION_QUEUE_ID  |
| NEXT_LOCK_ID              |
| NEXT_TXN_ID               |
| NOTIFICATION_LOG          |
| NOTIFICATION_SEQUENCE     |
| NUCLEUS_TABLES            |
| PARTITIONS                |
| PARTITION_EVENTS          |
| PARTITION_KEYS            |
| PARTITION_KEY_VALS        |
| PARTITION_PARAMS          |
| PART_COL_PRIVS            |
| PART_COL_STATS            |
| PART_PRIVS                |
| ROLES                     |
| ROLE_MAP                  |
| SDS                       |
| SD_PARAMS                 |
| SEQUENCE_TABLE            |
| SERDES                    |
| SERDE_PARAMS              |
| SKEWED_COL_NAMES          |
| SKEWED_COL_VALUE_LOC_MAP  |
| SKEWED_STRING_LIST        |
| SKEWED_STRING_LIST_VALUES |
| SKEWED_VALUES             |
| SORT_COLS                 |
| TABLE_PARAMS              |
| TAB_COL_STATS             |
| TBLS                      |
| TBL_COL_PRIVS             |
| TBL_PRIVS                 |
| TXNS                      |
| TXN_COMPONENTS            |
| TYPES                     |
| TYPE_FIELDS               |
| VERSION                   |
+---------------------------+
53 rows in set (0.00 sec)
  1. 在目录/home/hadoop/apache-hive-1.2.2-bin/bin执行命令./hive即可启动;

初始化和启动已经完成,接下来验证hive;

验证

  1. 前面执行./hive之后,已进入了对话模式,输入以下命令创建名为test001的数据库:

CREATE database test001;
  1. 选择该数据库:

use test001;
  1. 创建一个名为test_table的表:

create table test_table(
id  INT,
word  STRING
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY  '\t'
STORED AS TEXTFILE;
  1. 新建一个ssh连接,创建名为hive_test.txt的文本文件,内容如下:

1 aaa
2 bbb
3 ccc
4 ddd
5 eee
6 fff
  1. 回到和hive对话模式的控制台,输入以下命令,将上述文本文件的内容导入到test001.test_table表中:

LOAD DATA LOCAL INPATH '/home/hadoop/hive_test.txt' INTO TABLE test001.test_table;

控制台提示如下:

hive> LOAD DATA LOCAL INPATH '/home/hadoop/hive_test.txt' INTO TABLE test001.test_table;
Loading data to table test001.test_table
Table test001.test_table stats: [numFiles=1, totalSize=36]
OK
Time taken: 0.264 seconds
  1. 执行select操作,可以看到数据已经全部入库:

hive> select * from test_table;
OK
1 aaa
2 bbb
3 ccc
4 ddd
5 eee
6 fff
Time taken: 0.453 seconds, Fetched: 6 row(s)
  1. 执行group by查询:

select word,count(word) from test_table GROUP BY word;

此时会启动一个job来完成上述查询,控制台输出如下:

hive> select word,count(word) from test_table GROUP BY word;
Query ID = hadoop_20191007190528_3bd50401-267b-4d75-8b08-17ead5f0d790
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1570427946161_0002, Tracking URL = http://node0:8088/proxy/application_1570427946161_0002/
Kill Command = /home/hadoop/hadoop-2.7.7/bin/hadoop job  -kill job_1570427946161_0002
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2019-10-07 19:05:34,812 Stage-1 map = 0%,  reduce = 0%
2019-10-07 19:05:39,991 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.29 sec
2019-10-07 19:05:46,201 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 3.23 sec
MapReduce Total cumulative CPU time: 3 seconds 230 msec
Ended Job = job_1570427946161_0002
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 3.23 sec   HDFS Read: 7000 HDFS Write: 36 SUCCESS
Total MapReduce CPU Time Spent: 3 seconds 230 msec
OK
aaa 1
bbb 1
ccc 1
ddd 1
eee 1
fff 1
Time taken: 18.614 seconds, Fetched: 6 row(s)

至此,hive的安装和体验实战就完成了,希望本文能给一起学习hive的读者们一些参考。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页